
Available Online at www.ijcsmc.com

International Journal of Computer Science and Mobile Computing
A Monthly Journal of Computer Science and Information Technology

ISSN 2320–088X


RESEARCH ARTICLE

Use of Fuzzy System in the Eye Images

M.A.Pirbonyeh 1, Gh.Moloudian 2

1,2 Sama Technical and Vocational Training College, Islamic Azad University, Kazeroun Branch
Kazeroun, Iran

E-mail: *pirbonyeh@gmail.com

Abstract
In this Article, fuzzy neighbors rules are exploited to detect blood vessels in eye image. Images used in this
article are chosen from eye image bank of DRIVE database including 20 retinal images. A fuzzy system
consists of four segments: Fuzzy rule base, fuzzy inference engine, fuzzifier and defuzzifier. In fact, to
interpret fuzzy rules set inputs need to be fuzzified which means that input variables should take a value
between 0 and 1. We know that most of the images are in RGB format. Results from other researchers show
that using G channel leads to better results, thus we use the same channel. Obtained results demonstrate that
proposed algorithm has suitable performance. The average of accuracy parameter of 20 images is derived
92.8%.

Keywords—fuzzy system, eye image, drive data base, accuracy parameter

I. INTRODUCTION

This The human eye and n is considered as the most important part of a human body after the heart and that is
why it is of great importance. Before surgery, the ophthalmologist must take a picture of the eye to determine its
vessels; because it is possible to not draw some of the vessels correctly or accurately therefore we do this by
fuzzy systems. First, we examine the structure of the eye. Different parts of the human eye include the eyelids,
conjunctiva, cornea, limbal, sclera, iris, pupil, lens, anterior chamber, choroidal, posterior vitreous cavity, retina,
optic nerve and eye muscles.
Images that have been used in this article were driven from the eye images bank of the DRIVE database [1]. It is important to note about images of DRIVE database that the vessels in the images of this bank have been manually identified by an expert. Figure 2 shows the image number 20 of this database and the segmented image by an expert.

This database is widely used by scholars and researchers in the field of detecting vessels in retinal images. In this database, in addition to the original retinal image, there are the images of vessels segmentation by two experts as manually and the images related to the results of other researchers. Many researchers, including Niemeijer [2], chaudhuri [3], jiang [4], zana [5] and staal [6] work on retinal images whose results are located on the DRIVE database. Dua et al proposed a technique based on edge detection for vessel detection [7]. Estabridis et al utilized local Radon transform for detection [8]. Many papers have been presented on eye image processing [9-12] which researchers can compare their works work with the results of these papers.
II. THE PRESENTED ALGORITHM

Block diagram of the problem solving algorithm is as follows:

![Block diagram of the problem solving algorithm](image1)

In a more general case, the block diagram below can also be used.

![The presented algorithm](image2)

1) **II.1 Input image:**
We choose the input images from the DRIVE database of the eye images.

2) **II.2 Pre-processing:**
In the pre-processing stage, the optical disc area should be eliminated or reduced. This step is very important because if it is properly designed and implemented, we will be closer to achieving acceptable results. We know that most of the images are in RGB format. Results from other researchers show that using G channel leads to better results, thus we use the same channel.

3) **II.3 Fuzzy system:**
The presented algorithm is based on the rules of fuzzy neighborhood and accordingly detects the vessels of the eye. Neighborhood rules for a 3 × 3 matrix can be expressed as follows.

\[
\begin{array}{ccc}
M_1 & M_2 & M_3 \\
M_4 & 0 & M_6 \\
M_7 & M_8 & M_9 \\
\end{array}
\quad
\begin{array}{ccc}
A_1 & A_2 & A_3 \\
A_4 & A_5 & A_6 \\
A_7 & A_8 & A_9 \\
\end{array}
\]

![3 * 3 Matrix of the image](image3)

In the above matrix, \(M_i\) can be calculated from the following equation.

\[M_i = A_i - A_5\]
The rules of fuzzy neighborhood are explained as follows.

If $M_1$ is zero & $M_2$ is zero & $M_3$ is zero Then $A_5$ is ‘White’
If $M_1$ is zero & $M_4$ is zero & $M_7$ is zero Then $A_5$ is ‘White’
If $M_7$ is zero & $M_8$ is zero & $M_9$ is zero Then $A_5$ is ‘White’
If $M_3$ is zero & $M_6$ is zero & $M_9$ is zero Then $A_5$ is ‘White’
Else $A_5$ is ‘black’

4) II.4 Morphology:
To improve the segmentation of vessels, we use a series of operations called the morphology operations.

III. Simulation results

We run the presented algorithm on the DRIVE database images and compare the obtained results with the results from other researchers.

Figure 6: (a) image No.20 of DRIVE database, (b) manual method, (c) perez method, (d) Chaudhuri method, (e) jiang method, (f) fis method (fuzzy)
Researchers usually use accuracy parameter for evaluation. This parameter illustrates how much the researcher was successful in vessel detection. In the ideal conditions, when segmentation exactly matches reference segmentation, this parameter will equal to 1 (ACC=1).
Table 1: Comparison **Accuracy** of the results obtained from the fuzzy method with results from other researchers

<table>
<thead>
<tr>
<th>Number of figure</th>
<th>human 2</th>
<th>Chaudhuri</th>
<th>Jiang</th>
<th>Niemeijer</th>
<th>Perez</th>
<th>Staal</th>
<th>Zana</th>
<th>FIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.949</td>
<td>0.903</td>
<td>0.918</td>
<td>0.939</td>
<td>0.939</td>
<td>0.946</td>
<td>0.949</td>
<td>0.921</td>
</tr>
<tr>
<td>2</td>
<td>0.949</td>
<td>0.899</td>
<td>0.923</td>
<td>0.947</td>
<td>0.938</td>
<td>0.949</td>
<td>0.944</td>
<td>0.932</td>
</tr>
<tr>
<td>3</td>
<td>0.941</td>
<td>0.881</td>
<td>0.91</td>
<td>0.932</td>
<td>0.924</td>
<td>0.932</td>
<td>0.924</td>
<td>0.914</td>
</tr>
<tr>
<td>4</td>
<td>0.949</td>
<td>0.893</td>
<td>0.924</td>
<td>0.948</td>
<td>0.925</td>
<td>0.947</td>
<td>0.937</td>
<td>0.934</td>
</tr>
<tr>
<td>5</td>
<td>0.947</td>
<td>0.907</td>
<td>0.926</td>
<td>0.94</td>
<td>0.924</td>
<td>0.942</td>
<td>0.933</td>
<td>0.923</td>
</tr>
<tr>
<td>6</td>
<td>0.936</td>
<td>0.853</td>
<td>0.916</td>
<td>0.934</td>
<td>0.847</td>
<td>0.936</td>
<td>0.928</td>
<td>0.931</td>
</tr>
<tr>
<td>7</td>
<td>0.945</td>
<td>0.908</td>
<td>0.928</td>
<td>0.943</td>
<td>0.919</td>
<td>0.943</td>
<td>0.931</td>
<td>0.936</td>
</tr>
<tr>
<td>8</td>
<td>0.943</td>
<td>0.885</td>
<td>0.924</td>
<td>0.931</td>
<td>0.914</td>
<td>0.941</td>
<td>0.932</td>
<td>0.928</td>
</tr>
<tr>
<td>9</td>
<td>0.946</td>
<td>0.88</td>
<td>0.936</td>
<td>0.939</td>
<td>0.923</td>
<td>0.944</td>
<td>0.933</td>
<td>0.926</td>
</tr>
<tr>
<td>10</td>
<td>0.948</td>
<td>0.925</td>
<td>0.932</td>
<td>0.945</td>
<td>0.923</td>
<td>0.945</td>
<td>0.941</td>
<td>0.934</td>
</tr>
<tr>
<td>11</td>
<td>0.947</td>
<td>0.823</td>
<td>0.919</td>
<td>0.939</td>
<td>0.918</td>
<td>0.942</td>
<td>0.931</td>
<td>0.932</td>
</tr>
<tr>
<td>12</td>
<td>0.951</td>
<td>0.886</td>
<td>0.916</td>
<td>0.943</td>
<td>0.923</td>
<td>0.945</td>
<td>0.936</td>
<td>0.925</td>
</tr>
<tr>
<td>13</td>
<td>0.939</td>
<td>0.878</td>
<td>0.915</td>
<td>0.938</td>
<td>0.919</td>
<td>0.939</td>
<td>0.927</td>
<td>0.927</td>
</tr>
<tr>
<td>14</td>
<td>0.955</td>
<td>0.896</td>
<td>0.928</td>
<td>0.943</td>
<td>0.928</td>
<td>0.946</td>
<td>0.946</td>
<td>0.932</td>
</tr>
<tr>
<td>15</td>
<td>0.945</td>
<td>0.923</td>
<td>0.909</td>
<td>0.937</td>
<td>0.854</td>
<td>0.938</td>
<td>0.941</td>
<td>0.938</td>
</tr>
<tr>
<td>16</td>
<td>0.95</td>
<td>0.886</td>
<td>0.926</td>
<td>0.944</td>
<td>0.925</td>
<td>0.949</td>
<td>0.94</td>
<td>0.927</td>
</tr>
<tr>
<td>17</td>
<td>0.949</td>
<td>0.876</td>
<td>0.922</td>
<td>0.938</td>
<td>0.928</td>
<td>0.942</td>
<td>0.941</td>
<td>0.928</td>
</tr>
<tr>
<td>18</td>
<td>0.949</td>
<td>0.895</td>
<td>0.925</td>
<td>0.943</td>
<td>0.931</td>
<td>0.948</td>
<td>0.941</td>
<td>0.929</td>
</tr>
<tr>
<td>19</td>
<td>0.954</td>
<td>0.881</td>
<td>0.919</td>
<td>0.957</td>
<td>0.929</td>
<td>0.958</td>
<td>0.953</td>
<td>0.912</td>
</tr>
<tr>
<td>20</td>
<td>0.945</td>
<td>0.911</td>
<td>0.928</td>
<td>0.953</td>
<td>0.932</td>
<td>0.951</td>
<td>0.946</td>
<td>0.934</td>
</tr>
<tr>
<td>Average</td>
<td>0.947</td>
<td>0.889</td>
<td>0.922</td>
<td>0.942</td>
<td>0.918</td>
<td>0.944</td>
<td>0.938</td>
<td>0.928</td>
</tr>
</tbody>
</table>

**IV. CONCLUSIONS**

In this paper, we used the neighborhood fuzzy rules to detect blood vessels of the eye. The presented algorithm was investigated at 3 stages of Pre-processing, fuzzy and morphology. The results obtained at the preprocessing phase indicate that the optical disk and the image contrast are improved. We run the presented algorithm in MATLAB software on 20 Images of the DRIVE database. The results show that we have been successful in detecting the vessels to 92.8%, thus the proposed algorithm can be used for edge detection and processing of medical images with high accuracy.

**REFERENCES**


