ABSTRACT
In this paper, the analysis of the airline data set is performed using Microsoft Azure HDInsight which runs Hadoop in the cloud. Hive and Hive QL statements have been used for querying the data. Data visualization has been done by extracting the output of the Hive query in excel and plotting the data using line and scatter plot charts. The visualization of the data shows some patterns that exist between flight diversions and flight distance, flight cancellation and flight distance and so forth.

Keywords: Hadoop, HDInsight, Big Data, Hive, Data Visualization, Data Analysis

1. INTRODUCTION
There is no doubt that a lot of excitement exists with the term Big Data. Big Data in simple words can be large-scale data which does not have a well-defined structure. The size of the data itself is so huge that it is not practically easy for a single computer to store and process all the data by itself. Traditional computing approached the problem in a different way, the focus was always to increase the processing speed and power of the computer. As the data grows exponentially, the processing power of the single computer becomes a bottleneck and thus a new approach was needed to address the issue at hand. A new way was developed where many non-expensive commodity computers all working together in harmony with each other, in order to store and process this big data in parallel that allows us to extract meaningful information from a large data set. Moreover, current technologies using the cloud infrastructure allows us to easily create clusters of computers by renting them for as much time as required and then releasing the computing resources when no longer needed. Thus with cloud technologies we get the computing power of the clusters of computers with minimal investment. The airline data has been taken from the United States Department of Transportation, Bureau of Transportation Statistics [1]. The data consists of the arrival and departure records of all US domestic flights from the period 2012 to 2014. Section 2 gives a brief introduction of the Airline Data set, Hive and Hindsight. Section 3 describes the
mechanism by which the data set is analyzed. Section 4 describes the experimental observations from the data set. Section 5 is the conclusion of this paper.

2. AIRLINE DATA, HIVE AND HDINSIGHT
This section briefly describes the characteristics of the Airline Data set, introduces HIVE and HDINSIGHT.

2.1 Characteristics of the Airline Data
Total number of files: 36.
File type: csv (comma separated values)
Total file size: 3.65 GB.
Total number of records: 18.2 Million (18,286,090)

2.2 Hive
Hive, allows SQL developers to write Hive Query Language (HQL) statements that are similar to standard SQL statements. HQL statements are broken down into MapReduce jobs and executed across a Hadoop cluster. Even though, HQL statements are similar to SQL statements, there are several key differences because Hive is based on Hadoop and MapReduce Operations. The first is that Hadoop is intended for long sequential scans, and because Hive is based on Hadoop, queries tend to have a very high latency (many minutes). This means that Hive would not be appropriate for applications that need very fast response times. Hive is read-based and therefore not appropriate for transaction processing that typically involves a high percentage of write operations [2].

2.3 HD Insight
Azure HDInsight deploys and provisions Apache Hadoop clusters in the cloud, providing a software framework designed to manage, analyze, and report on big data with high reliability and availability. HDInsight uses the Hortonworks Data Platform (HDP) Hadoop distribution. Hadoop often refers to the entire Hadoop ecosystem of components, which includes Storm and HBase clusters, as well as other technologies under the Hadoop umbrella. Azure HD Insight deploys and provisions Hadoop clusters in the cloud, by using either Linux or Windows as the underlying Operating System [3].

3. ANALYSIS OF AIRLINE DATA USING HDINSIGHT
In order to analyze the Airline Data, the data needs to be first saved to the Azure Blob Storage [4], which is a cloud data storage service provided by Microsoft Azure. For transferring the Airline Data to the Azure Blob storage, a client utility program “CloudBerry Explorer for Azure Blob Storage” was used [5]. Azure Blob storage is a robust, general-purpose storage solution that integrates seamlessly with HDInsight. Through a Hadoop distributed file system (HDFS) interface, the full set of components in HDInsight can operate directly on structured or unstructured data in Blob storage. Storing data in Blob storage provides the ability to safely delete the HDInsight clusters that are used for computation without losing user data. Azure HDInsight provides a full-featured Hadoop distributed file system (HDFS) over Azure Blob storage. It enables the full set of components in the Hadoop ecosystem to operate directly on the data it manages. Azure Blob storage and HDFS are distinct file systems that are optimized for storage of data and computations on that data [6].
Once the Azure Blob storage account is created and the data is transferred, the HDInsight cluster can be launched from Microsoft Azure Portal. The overall structure of the system is as shown in the Fig 1 below.

4. EXPERIMENTAL RESULTS
For analyzing the Airline Data, a cluster of 4 data nodes (4 compute machines) running Microsoft Windows Server 2012 R2 Datacenter operating system was launched. Hive runs on the cluster by default when the cluster is up and running. Using the Hive query console, the data is analyzed as follows:

4.1 Total Number of Flights Cancelled Each Month for 2012-2014
The Hive QL for querying the total number of flights that were cancelled every month from 2012 to 2014 is:

SELECT YEAR, MONTH, COUNT (CANCELLED) AS TOTAL_CANCELLED
FROM Airline
WHERE CANCELLED = 1
GROUP BY YEAR, MONTH
ORDER BY YEAR, MONTH
LIMIT 50;

4.2 Total Number of Flights Diverted Each Month for 2012-2014
The Hive QL for querying the total number of flights that were diverted every month from 2012 to 2014 is:

SELECT YEAR, MONTH, COUNT (DIVERTED) AS TOTAL_DIVERTED
FROM Airline
WHERE DIVERTED = 1
GROUP BY YEAR, MONTH
ORDER BY YEAR, MONTH
LIMIT 50;
4.3 Total Number of Flights Cancelled Each Year for 2012-2014
The Hive QL for querying the total number of flights that were cancelled every year from 2012 to 2014 is:

```
SELECT YEAR, COUNT (CANCELLED) AS TOTAL_CANCELLED
FROM Airline
WHERE CANCELLED = 1
GROUP BY YEAR
ORDER BY YEAR
LIMIT 50;
```

The total time that

5. CONCLUSION
From the above experimental results, we can see that interesting sets of trends and patterns exists in large data sets which help us to get a better understanding of the data. Recent advancement in cloud technologies helps us to harness the power of parallel processing of a cluster of computers with little investment and almost no maintenance of the underlying computer hardware. From the experimental results we also see the following observations:

a. Average flight departure delay is at peak during the months of June and July every year and there is a sharp increase in the average delay from November to December.
b. Average flight departure delay is increasing continuously over the period 2012 to 2014 in spite of the fact that the total number of flights have decreased from 2013 to 2014.
c. Highest average departure delay for flights has been observed for flight distance of less than 500 miles.
d. Highest numbers of flights which are cancelled have a flight distance of less than 1000 miles.
e. There is a trend of increasing flights which are cancelled every year from 2012 to 2014.
f. There is a sharp rise in the number of flights which are cancelled from the month of November to January every year for 2012 to 2014.

REFERENCES
[1] Airline Data Set, United States Department of Transportation, Office of the Assistant Secretary for Research and Technology, Bureau of Transportation Statistics, http://www.transtats.bts.gov/DL_SelectFields.asp/Table_ID=236