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ABSTRACT - Big Data Processing relates to Processing of very large scale data. It includes complex data 

analysis. RDF is very popular type of semantic Web data that store and retrieve huge amount of useful data 

as Resource. RDF stands form Resource Description Framework. One useful representation of RDF data is 

N-Triple, in which Subject-Predicate-Object model is used to represent RDF Data. I am going to develop 

customized Template for RDF file which can be used for accessing data faster from RDF file. To get data 

from RDF file we will use SPARQL using Apache Jena. I can also apply Bloom Filter for Text data in RDF 

file. RDF file and Query file will be input for our algorithm and after processing new RDF file will be 

generated using customized template that give faster query result then old RDF. The generation of RDF data 

has accelerated to the point where many data sets need to be partitioned across multiple machines in order to 

achieve reasonable performance when querying the data. Although tremendous progress has been made in 

the Semantic Web community for achieving high performance data management on a single node, current 

solutions that allow the data to be partitioned across multiple machines are highly inefficient. I introduce a 

scalable RDF data management system that is up to three orders of magnitude more efficient than popular 

multi-node RDF data management systems. 
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I. INTRODUCTION 

This paper focuses on selectivity estimation for SPARQL graph patterns, which is crucial to RDF query 

optimization. The previous work takes the join uniformity assumption, which would lead to high inaccurate 

estimation in the cases where properties in SPARQL graph patterns are correlated. We take into account the 

dependencies among properties in SPARQL graph patterns and propose a more accurate estimation model. We 

first focus on two common SPARQL graph patterns (star and chain patterns) and propose to use Bayesian 

network and chain histogram for estimating the selectivity of them. Then, for an arbitrary composite SPARQL 

graph pattern, we maximally combines the results of the star and chain patterns we have pre-computed. The 
experiments show that our method outperforms existing approaches in accuracy. Since the use of RDF to 

represent data has grown dramatically over the last few years, query processing on RDF data becomes an 
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important issue. Selectivity estimation for SPARQL graph patterns is crucial to RDF query processing. As we 

know, RDF data is a set of triples with the form (subject, property, object). This fine-grained model leads to 

SPARQL queries on RDF data with a large number of joins. As such, precise estimation of the selectivity of 

joined triple patterns is very important. 
 

II. Introduction to RDF 

RDF Query Language2 (SPARQL). RDF is the standard for storing and representing data and SPARQL is a 

query language to retrieve data from an RDF store. The power of these Semantic Web technologies can be 

successfully harnessed in cloud computing environment to provide the user with capability to efficiently store 

and retrieve data for data intensive applications. Synergy between the semantic web and cloud computing fields 

offers great benefits, such as standards for data representation across frameworks. One such standard is the 

Resource Description Framework (RDF). With the explosion of semantic web technologies, large RDF graphs 

are common place. Current frameworks do not scale for large RDF graphs. I describe a framework that we built 

using Hadoop, a popular open source framework for Cloud Computing, to store and retrieve large numbers of 
RDF triples. We describe a scheme to store RDF data in Hadoop Distributed File System. We present an 

algorithm to generate the best possible query plan to answer a SPARQL Protocol and RDF Query Language 

(SPARQL) query based on a cost model. I use Hadoop’s MapReduce framework to answer the queries. Our 

results show that we can store large RDF graphs in Hadoop clusters built with cheap commodity class hardware. 

Furthermore, we show that our framework is scalable and efficient and can easily handle billions of RDF triples, 

unlike traditional approaches. 

 

 

III. Introduction to MapReduce 

MapReduce is a programming model and an associated implementation for processing and generating large 

data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate 
key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate 

key. Many real world tasks are expressible in this model, as shown in the paper. Programs written in this 

functional style are automatically parallelized and executed on a large cluster of commodity machines. The run-

time system takes care of the details of partitioning the input data, scheduling the program's execution across a 

set of machines, handling machine failures, and managing the required inter-machine communication. This 

allows programmers without any experience with parallel and distributed systems to easily utilize the resources 

of a large distributed system. Our implementation of  MapReduce runs on a large cluster of commodity 

machines and is highly scalable: a typical MapReduce computation processes many terabytes of data on 

thousands of machines. Programmer’s the system easy to use: hundreds of  MapReduce programs have been 

implemented and upwards of one thousand MapReduce jobs are executed on Google's clusters every day. Over 

the past years, the authors and many others at Google have implemented hundreds of special-purpose 
computations that process large amounts of raw data, such as crawled documents, web request logs, etc., to 

compute various kinds of derived data, such as inverted indices, various representations of the graph structure of 

web documents, summaries of the number of pages crawled per host, the set of most frequent queries in a given 

day, etc. Most such computations are conceptually straightforward. However, the input data is usually large and 

the computations have to be distributed across hundreds or thousands of machines in order to in a reasonable 

amount of time. The issues of how to parallelize the computation, distribute the data, and handle failures 

conspire to obscure the original simple computation with large amounts of complex code to deal with these 

issues. As a reaction to this complexity, we designed a new abstraction that allows us to express the simple 

computations we were trying to perform but hides the messy details of parallelization, fault-tolerance, data 

distribution and load balancing in a library. Our abstraction is inspired by the map and reduce primitives present 

in Lisp and many other functional languages. We realized that most of our computations involved applying a 

map operation to each logical .record. in our input in order to compute a set of intermediate key/value pairs, and 
then applying a reduce operation to all the values that shared the same key, in order to combine the derived data 

appropriately. Our use of a functional model with user specified map and reduce operations allows us to 

parallelize large computations easily and to use re-execution as the primary mechanism for fault tolerance. The 

major contributions of this work are a simple and powerful interface that enables automatic parallelization and 

distribution of large-scale computations, combined with an implementation of this interface that achieves high 

performance on large clusters of commodity PCs. 
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IV. Introduction to Hadoop 

Hadoop is an open-source software for reliable scalable, distributed computing. Many large-scale data 

analysis tasks have been done on this platform. Using a cluster with lots of computers, Hadoop provides a 

powerful computing ability to handle the scalability well. Hadoop consists of two layers, the data storage layer 

or the Hadoop Distributed File System (HDFS) and the data processing layer or the MapReduce Framework. 

HDFS is a block-structured system. Files are cut into blocks and stored in the cluster nodes which are called 

datanode. And there is a namenode which contains metadata about the size and the location of the blocks. 
MapReduce is a framework for the computing in Hadoop, which follows master-slave architecture. Each job is 

broken into map jabs and reduce jobs, which are executed in the slave nodes. HadoopRDF combines both of the 

systems. Hadoop is used as the base architecture. A cluster is arranged by hadoop which is considered as the 

communication and controlling tool. All the jobs are ordered and arranged by the internal rules in hadoop 

cluster. RDF triple store is placed in the slave nodes in the cluster which supplies the basic storage and retrieves 

needs. To make the methods e_ective, several special parts should be considered during the design of the 

system. As data on the public web has been expanded rapidly and more data is represented in the form of RDF 

as for its advantages, the scalability problem while dealing with it becomes important. To store and retrieve the 

RDF data, triple stores such as same, 4store, have been researched. However, these tools are designed on a 

single computer and the ability to handle the scalability is limited. Hadoop is an open source platform for 

distributed computing and has been widely used for largescale data analysis.  

 

 

V. Method 

Methods of Selectivity Estimation in SPARQL 

1) Histogram Method  

Basically Histogram methods are most popular method to get the results from database and  also from RDF. 

Histogram methods are also used for SPARQL and RDF. In Histogram methods dataset is divided in 'Buckets'. 

And when query is executed it will fired against the bucket in place of entire dataset. Data are distributed in 
'Buckets' in some common fashion. And it is based on partitioning rule. 

 

Every histogram has some common characteristics like. 

1) Partition class: The restricted class of histograms considered by the partitioning rule. 

2) Partition constraint: The mathematical constraint that uniquely identifies the histogram within its 

partition class. 

3) Sort parameter and source parameter. 

4) Approximation of values within a bucket. 

5) Approximation of frequencies within a bucket. 

 

2) Index Method 

Like its name suggest Indexing/Ordering of data is considered in this method. 
This is most common method used in RDBMS also. Aggregated indexes can be also used for ordering in 

SPARQL Joins. That can be like 

An index I over a data graph G is a pair I = (P, O), where P represents a pattern and O represents the set of all 

occurrences of P in G. 
 

 

VI. Related Work 

1.  In 2010  Hai Huang (Faculty of ICT – Swinburne University of Technology) Chengfei Liu (Faculty of ICT – 

Swinburne University of Technology) This paper focuses on selectivity estimation for SPARQL graph patterns. 

They first focus on two common SPARQL graph patterns (star and chain patterns) and propose to use Bayesian 
network and chain histogram for estimating the selectivity of them. Then, for an arbitrary composite SPARQL 

graph pattern, we maximally combines the results of the star and chain patterns we have precomputed. 
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For Star Graph Pattern they have used equation like 

 

Fig 1 

Where Parents denotes the set of immediate predecessors of propi in the Bayesian network; ~ ok denotes the set 

of values of Parents. 
For example  

 
Fig 2 

For estimating the selectivity of frequent star patterns, we construct the cluster-property table R for each one. 
 

For Chain Pattern  

They construct the chain count table TC for frequent chain patterns, which has two attributes: Head-Chain-Rear 

and Count. 

For example 

 
Fig 3 

Thus, we group the chain patterns in TC into several buckets according to their frequencies. And for each bucket 

we only need to save the average frequency and its chain pattern members. So given a chain pattern and which 

bucket it belongs to, we can easily get the frequency of this chain pattern. For efficient processing the 

membership queries, we use bloom filter, a space-efficient probabilistic data structure often used to test whether 

an element is a member of a set. Here, we use bloom filter to test whether a chain pattern is a member of a 

bucket. 
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Result 

 

Fig 4 

2.  In 2008 Markus Stocker (HP Laboratories – Bristol UK)Andy Seaborne (HP Laboratories – Bristol UK) 
Dave Raynolds (HP Laboratories – Bristol UK) Abraham Bernstein (Department of Informatics University of 

Zurich) Christoph Keifer (Department of Informatics University of Zurich) approaches this paper, they 

formalize the problem of Basic Graph Pattern (BGP) optimization for SPARQL queries and main memory graph 

implementations of RDF data. They define and analyze the characteristics of heuristics for selectivity based 

static BGP optimization. The heuristics range from simple triple pattern variable counting to more sophisticated 

selectivity estimation techniques. 

Method 

They used following formula for calculating the Selectivity Estimation 

 

Fig 5 

In order to work on this equation they also calculated the summary statistics like join triple statistics and Simple 

Triple Pattern statistics of various RDF details. 

 

3. In  2010 Mohmmad Farhan Hussain – University of Texas ,Latifar Khan - University of Texas at Dallas, 

Murat Kantarcioglu – University of Texas at Dallas ,Bhavani Thuraisingham - University of Texas at Dallas 

They describe a framework that they built using Hadoop, a popular open source framework for Cloud 
Computing, to store and retrieve large numbers of RDF triples. We describe a scheme to store RDF data in 

Hadoop Distributed File System. We present an algorithm to generate the best possible query plan to answer a 

SPARQL Protocol and RDF Query Language (SPARQL) query based on a cost model. They have presented a 

framework capable of handling enormous amount of RDF data. Since our framework is based on Hadoop, 

which is a distributed and highly fault tolerant system, it inherits those two properties automatically. The 

framework is highly scalable. To increase capacity of our system all that needs to be done is to add new nodes to 

the Hadoop cluster. They have proposed a schema to store RDF data in plain text files, an algorithm to 

determine the best processing plan to answer a SPARQL query and a cost model to be used by the algorithm. 

Our experiments demonstrate that our system is highly scalable. If they add data, the delay introduced to answer 

a query does not increase as much as the increment in the data size. 

 
4. In 2011 Daisy Zhe Wang - University of California, Berkeley ,Long Wei - University of California, Berkeley 

,Yunyao Li - University of California, Berkeley, Frederick Reiss  - University of California, Berkeley, 

Shivakumar Vaithyanathan- University of California, Berkeley. They also develop techniques to decompose a 

complicated  regular expression into subparts to achieve more effective and accurate estimation. They conduct 

experiments over the Enron email corpus using both real-world and synthetic workloads to compare the 

accuracy of the selectivity estimation over different classes and variations of synopses. The results show that, 
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the top-k stratified bloom filter synopsis and the roll-up synopsis is the most accurate in dictionary and regular 

expression selectivity estimation respectively. They proposed a document synopsis-based approach for 

selectivity estimation. They developed three classes of document synopsis: n-gram synopsis, bloom filter 

synopsis and roll-up synopsis. Our experimental results show that these synopsis are compact and enable 

accurate selectivity estimations. As future work, we intend to look at cost estimation of extraction operators and 

extend a database query optimizer to use these statistics. 
 

5. In 2012 Jens Dittrich - Saarland University, Jorge Arnulfo QuianeRuiz - Saarland University they teach such 

techniques. First, they will briefly familiarize the audience with Hadoop MapReduce and motivate its use for big 

data processing. Then, they will focus on different data management techniques, going from job optimization to 

physical data organization like data layouts and indexes. Throughout this tutorial, they will highlight the 

similarities and differences between Hadoop MapReduce and Parallel DBMS. Furthermore, they will point out 

unresolved research problems and open issues. They conclude by providing a holistic view on how to leverage 

state-of-the-art approaches (presented in the first three parts) to significantly improve the performance of 

Hadoop MapReduce jobs. In particular, they will identify open challenges. In addition, they will sketch a vision 

on how future Hadoop MapReduce platforms may look like. Finally, they will open the floor for questions on 

dedicated topics presented in this tutorial. Target Audience. The first part of this tutorial covers the basics of 

Hadoop MapReduce. Therefore this part is interesting for all VLDB attendees who want to learn how Hadoop 
MapReduce can be used for big data analytics. The second and third part of this tutorial are designed for 

attendees — researchers as well as practitioners with an interest in performance optimization of Hadoop 

MapReduce jobs. 
 

CONCLUSION 

In my report, the goal of Hadoop MapReduce method using to retrieve the large scale of RDF dataset 

processed. RDF data process using the MapReduce to extract the data against SPARQL queries. We have 

focused on Start Pattern Query and Chain Pattern Query for our research work. We are trying to speed up the 

execution of complex queries agains RDF. Use the String Synopsis which can remove repeated Object literals in 

Maps. This algorithm removes unnecessary Map Reduce Cycle to generate optimized RDF. Bloom Filter can 

check the data available in set. Algorithm can be reduced the queries execution time as compare to original 

RDF. 
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