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Abstract- In this paper, we discuss about the frequent itemset mining which is a type of data mining that 

focuses on looking at sequences of events and which searches for recurring relationships in a given data set 

and about the algorithms used for the frequent itemset mining. The comparative study between the 

algorithms namely Apriori algorithm and FP growth algorithm which gives the details about the efficiency 

about the each algorithm and thereby helps to decide the most optimum and efficient algorithm. No doubt 

that Apriori algorithm successfully finds the frequent elements from the database, but FP-growth an efficient 

mining method of frequent patterns with respect to the large database finding the large pattern. 
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I.INTRODUCTION 

Data mining, the mining of hidden predictive information from large databases, is the most powerful 

technology which helps companies focus on the most important information in their data warehouses. Data 

mining tools predict future trends and behaviours, allowing businesses to make proactive, knowledge-driven 

decisions. The automated, prospective analyses offered by data mining goes  beyond the analyses of history 

events provided by tools typical of decision support systems. Data mining tools can answer business questions 

but which were too time consuming to resolve. 

Data mining techniques are the result of a long process of research and product development. This 

evolution began when business data was first stored on computers, continued with improvements in data access, 

and more recently, generated technologies that allow users to navigate through their data in real time. Data 

mining is done in many patterns, one among them is the Frequent Itemset mining. 
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Frequent itemset mining is a type of data mining that focuses on looking at sequences of 

events.Frequent patterns are patterns (such as itemsets, subsequences, or substructures) that appear in a data set 

frequently. For example, a set of items, such as milk and egg, that appear frequently together in a transaction 

data set is a frequent itemset. A subsequence, such as buying first a Laptop, then a digital camera, and then a 

memory card, if it occurs frequently in a shopping history database, is a (frequent) sequential pattern. A 

substructure can refer to different structural forms, such as subgraphs, subtrees, or sublattices, which may be 

combined with itemsets or subsequences. If a substructure occurs frequently, it is called a (frequent) structured 

pattern. 

Frequent pattern mining searches for recurring relationships in a given data set. Frequent pattern 

mining is used for the discovery of interesting associations and correlations between itemsets in transactional 

and relational database. With large amount of data continuously being collected and stored, many organizations 

are becoming interested in mining such patterns from the large databases. The discovery of interesting 

correlation relationships among huge amounts of business transaction records can help in many business 

decision-making processes, such as catalog design, cross-marketing, and customer shopping behaviour analysis. 

A typical example of frequent itemset mining is market basket analysis. This process analyzes customer buying 

habits by recognizing associations between the different items that customers place in their “shopping baskets” 

.The discovery of such associations can help retailers develop marketing strategies by gaining insight into which 

items are frequently purchased together by customers. The Boolean vectors can be analyzed for buying patterns 

that portray items that are most frequently associated or bought together. These patterns can be represented in 

the form of association  rules. For example, the information that customers who purchase computers also tend to 

buy antivirus software which is represented in Association Rule as  below: 

computer ⇒ antivirus software [support = 3%,confidence = 50%]  

Here, in this association rule support and confidence are two measures of rule interestingness. They 

respectively reflect the usefulness and certain type of discovered rules. A support of 3% for Association Rule 

means that 3% of all the transactions under analysis show that computer and antivirus software are purchased 

together. A confidence of 50% means that 50% of the customers who purchased a computer also bought the 

antivirus software. Some of the Algorithms used for analysing the frequent itemset pattern are Apriori algorithm 

and the F-P Growth Algorithm. In this paper we conduct a comparative study between the two algorithms and 

find the efficient among the two. 

II.RELATED WORK 

Apriori is an algorithm proposed by R.Agrawal and R.Srikantin 1994 for mining frequent itemsets for 

Boolean association rules. The name of the algorithm is based on the fact that the algorithm uses prior 

knowledge of frequent itemset properties. Apriori employs an iterative approach known as a level-wise search, 

where k-itemsets are used to explore(k+1)-itemsets. First, the set of frequent1-itemsets is found by scanning the 

database to accumulate the count for each item, and collecting those  items  that satisfy minimum support. The 

resulting set is denoted L1.Next,L1 is used to find L2, the set of frequent2-itemsets,which is used to find L3,and 

soon, until no more frequent k-itemsets can be found. The finding of each Lk requires one full scan of the 

database. The Apriori algorithm is illustrated below: 

Algorithm: Apriori, Find frequent itemsets using an iterative level-wise approach based on candidate 

generation. Input:D, a database of transactions; min sup, the minimum support count threshold. 

Output: L, frequent itemsets in D. Method: 

(1) L1 = find frequent 1-itemsets(D); 

(2) for (k = 2;Lk−1 6= φ;k++) {  

(3) Ck = apriori gen(Lk−1);  

(4) for each transaction t ∈ D { // scan D for counts  

(5) Ct = subset(Ck, t); // get the subsets of t that are candidates  

(6) for each candidate c ∈Ct  

(7) c.count++;  
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(8) }  

(9) Lk = {c ∈Ck|c.count ≥ min sup}  

(10) }  

(11) return L = ∪kLk;  

procedure apriori gen(Lk−1:frequent (k−1)-itemsets)  

(1) for each itemset l1 ∈ Lk−1 

(2) for each itemset l2 ∈ Lk−1 

(3) if (l1[1] = l2[1])∧(l1[2] = l2[2])∧...∧(l1[k−2] = l2[k−2])∧(l1[k−1] < l2[k−1]) then { 

(4) c = l1 on l2; // join step: generate candidates  

(5) if has infrequent subset(c, Lk−1) then 

(6) delete c; // prune step: remove unfruitful candidate 

(7) else add c toCk;  

(8) }  

(9) returnCk; 

procedure has frequent subset(c: candidate k-itemset; Lk−1: frequent (k−1)-itemsets); // use prior knowledge 

 (1) for each (k−1)-subset s of c  

 (2) if s 6∈ Lk−1 then 

 (3) return TRUE; 

 (4) return FALSE; 

To increase the efficiency of this algorithm, joining and pruning method is used. 

The steps to mine the frequent elements are as follows: 

• Generate and test: In this first find the 1-itemset frequent elements L1 by scanning the database and removing 

all those elements from C which cannot satisfy the minimum support criteria. 

• Join step: To attain the next level elements Ck join the previous frequent elements by self join i.e. Lk-1*Lk-1 

known as Cartesian product of Lk-1 . i.e. This step generates new candidate k-itemsets based on joining Lk-1 

with itself which is found in the previous iteration. Let Ck denote candidate k-itemset and Lk be the frequent k-

itemset. 

• Prune step: This step eliminates some of the candidate k-itemsets using the Apriori property. A scan of the 

database to determine the count of each candidate in Ck would result in the determination of Lk (i.e., all 

candidates having a count no less than the minimum support count are frequent by definition, and therefore 

belong to Lk). Step 2 and 3 is repeated until no new candidate set is generated. As we have seen, in many cases 

the Apriori candidate generate-and-test method gradually reduces the size of candidate sets, leading to good 

performance gain.  
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Limitations: 

However, it can suffer from two nontrivial costs: 

(1) It may need to generate a huge number of candidate sets. For example, if there are 104 frequent 1-itemsets, 

the Apriori algorithm will need to generate more than 107 candidate 2-itemsets. Moreover, to discover a 

frequent pattern of size 100, such as {a1,..., a100}, it has to generate at least 2100 −1 ≈ 1030 candidates in total. 

 (2) Itmayneedtorepeatedlyscanthedatabaseandcheckalargesetofcandidatesbypattern matching. It is costly to go 

over each transaction in the database to determine the support of the candidate itemsets. 

Another method that mines the complete set of frequent itemsets without candidate generation is called 

frequent-pattern growth, or simply FP-growth, which adopts a divide-and-conquer strategy. First, it compresses 

the database representing frequent items into a frequent-pattern tree, which retains the itemset association 

information. It then divides the compressed database  into a set of conditional databases, each associated with 

one frequent item or pattern fragment  and mines each such database separately. F-P Growth algorithm is 

illustrated below: 

Algorithm: FP growth. Mine frequent itemsets using an FP-tree by pattern fragment growth. 

Input: D, a transaction database;  

           min sup, the minimum support count threshold. 

Output: The complete set of frequent patterns. Method: 

1. The FP-tree is constructed in the following steps: 

(a) Scan the transaction database D once. Collect F, the set of frequent items, and their support counts. Sort F in 

support count descending order as L, the list of frequent items. 

 (b) Create the root of an FP-tree, and label it as “null.” For each transaction Trans in D do the following. Select 

and sort the frequent items in Trans according to the order of L. Let the sorted frequent item list in Trans be 

[p|P], where p is the first element and P is the remaining list. Call insert tree([p|P], T), which is performed as 

follows. If T has a child N such that N.item-name=p.item-name, then increment N’s count by 1; else create a 

new node N, and let its count be 1, its parent link be linked to T, and its node-link to the nodes with the same 

item-name via the node-link structure. If P is nonempty, call insert tree(P, N) recursively. 

2. The FP-tree is mined by calling FP growth(FP tree, null), which is implemented as follows. procedure FP 

growth(Tree, α) 

 (1) if Tree contains a single path P then  

(2) for each combination (denoted as β) of the nodes in the path P  

(3) generate pattern β∪α with support count = minimum support count of nodes in β; 

(4) else for each ai in the header of Tree {  

(5) generate pattern β = ai ∪α with support count = ai.support count;  

(6) construct β’s conditional pattern base and then β’s conditional FP tree Treeβ;  

(7) if Treeβ 6= / 0 then  

(8) call FP growth(Treeβ, β); } 

III.CONCLUSION 

In this paper, after the comparative study between the two algorithms it is easy to decide that F-P 

Growth algorithm is more efficient compared to an Apriori algorithm. It is no doubt that Apriori algorithm 

successfully finds the frequent elements from the database. But as the dimensionality of the database increase 

with the number of items then more search space is needed and I/O cost will increase. Number of database scan 

is increased thus candidate generation will increase, which in turn results in increase in computational cost. FP-
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tree a novel data structure storing compressed, crucial information about frequent patterns is compact yet 

complete for frequent pattern mining. FP-growth an efficient mining method of frequent patterns in large 

database using a highly compact FP-tree, divide-and-conquer method. However, both Apriori and FP-Growth 

are aiming to find out complete set of patterns but, FP-Growth is more efficient than Apriori in concern to long 

patterns. 
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