
Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 287

 Available Online at www.ijcsmc.com

International Journal of Computer Science and Mobile Computing

A Monthly Journal of Computer Science and Information Technology

ISSN 2320–088X

IJCSMC, Vol. 4, Issue. 6, June 2015, pg.287 – 298

 RESEARCH ARTICLE

Batch Inherence of Map

Reduce Framework
Jaswender Malik, Ms. Kavita

1,2
COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

Maharshi Dayanand University, Rohtak Haryana
1 Jassi15malik@gmail.com

Abstract: Big Data is dealt by every organization which serves large number of users.

Efficiently fetching, transferring, storing, cleaning, sanitizing, querying and extracting

information from Big Data is a daunting task because a single machine and the

traditional algorithms can’t handle this staggering amount of data tractable. The open

source Map Reduce system Hadoop doesn’t provide any API to view the partial results

programmatically or manually. In this Research paper we will extend Map Reduce to

stop a job early during execution if the partial results meet a certain user specified

constraint. This enhancement can save a lot of time for certain kind of batch processing

applications prevalent in industry.

Keywords – Big Data Analysis, HDFS, Map Reduce

Introduction

Map Reduce is a batch text processing system which makes the user waits till the end of

execution to view the job’s output and perform an action based on the same. In certain use

cases, user may want to terminate a job long before the finish of execution and start a new

job based on partially available result of the current job in the case that the partial result

Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 288

satisfies a certain user specified constraint. For example, a user while running a Word

Count Map Reduce job may want that if a certain word has occurred more than n times,

then no further execution is required and the job should be terminated. In current Map

Reduce implementations, this is not possible because the user must wait till the end of the

execution to see the result.

Batch inherence of Map Reduce framework

Map Reduce [1] framework was modeled with the aim of providing batch execution of

data processing jobs on a large cluster of distributed systems. Developing a typical Map

Reduce application [1] involves three steps from the user’s part –

 Collection of input data to be processed, in form of ASCII text files

 Writing map and reduce functions to transform the input data according to the

requirement

 Collecting and analyzing output data, and possibly use it as an input for another

MapReduce job

Availability of partial results

Partial results can be made available by making some changes in existing Map Reduce

implementation. In current Map Reduce implementations, the Map tasks finish, then the

reducers start which apply the reduce function on the Map output. By modifying this

implementation in such a way that reducers start early and reduce function is applied on

partially available Map output, we can make partial results available. But this requires

more careful treatment of fault tolerance. But reducers start which apply the reduce

function on the Map output. By modifying this implementation in such a way that reducers

start early and reduce function is applied on partially available Map output, we can make

partial results available. But this requires more careful treatment of fault tolerance.

Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 289

Pipelining in Map Reduce

For making partial results available during the execution, the idea is to pipeline the data

between mappers and reducers to the maximum possible extent. We start the reducers in

parallel with mappers and then let the map tasks send their output to reduce tasks as and

when produced. This allows the reducers to apply the reduce function on the map output

available to them till a particular instant of time. This has been achieved and described in

detail in [2].

Constraint based job termination

This provides the programmer with facility to stop the execution of Map Reduce jobs

when certain user specified constraints are met. The conditions can be:

 Accuracy of the estimate reaches within a certain percentage Certain percentage of input

data successfully processed

 A key has been encountered certain number of times

 Certain amount of time elapsed since the start of job execution

Pipelining in Map Reduce

For making partial results available during the execution, the idea is to pipeline the data

between mappers and reducers to the maximum possible extent. We start the reducers in

parallel with mappers and then let the map tasks send their output to reduce tasks as and

when produced. This allows the reducers to apply the reduce function on the map output

available to them till a particular instant of time. This has been achieved and described in

detail in [2].

Constraint based job termination

This provides the programmer with facility to stop the execution of Map Reduce jobs

when certain user specified constraints are met. The conditions can be:

Accuracy of the estimate reaches within a certain percentage Certain percentage of input

data successfully processed.

A key has been encountered certain number of times

Certain amount of time elapsed since the start of job execution

Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 290

Hadoop Architecture

The key aims in architecting Hadoop are as follows:

 Easily distribute data and computation across all the nodes in the cluster

 Provide fault tolerance assuming that nodes, network, disks can go down any

time during the course of execution

Architectural components

Hadoop comprises of two main architectural components viz. Hadoop Distributed File

System [3] i.e. HDFS, and Hadoop Map Reduce Job Execution Framework.

Hadoop Distributed File System (HDFS)

Hadoop Distributed File System is a fault tolerant Distributed File System built for high

volume data storage with very high performance for read/write through-puts. It uses

replication of data, to provide fault tolerance by failover and high throughput of read

operations by parallel reads. It consists of two components - a master called namenode

which is responsible for storing the metadata of all the files stored on HDFS, and other

nodes called datanode which store the actual data. By default, the data is broken down into

64MB splits/chunks and stored on different datanodes with a replication factor of 3.

Replication factor determines the number of copies of each chunk in HDFS When a client

application needs to read and write data, it contacts the namenode with the file path and

the namenode returns the chunk handles and addresses of the data nodes that contain the

chunks/splits of that file. The client can then directly issue file append/read requests to the

chunk owning datanode. Details of Implementation of HDFS has been provided in [4].

Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 291

 Figure 4.0 : Hadoop cluster

Hadoop Map Reduce Job Execution Framework

Hadoop Map Reduce Job Execution Framework allows a user to submit jobs writ-ten in

MapReduce programming model and executes these jobs. It consists of a master called

JobTracker which accepts MapReduce jobs from clients and divides them into tasks and

assigns them to TaskTrackersas shown in fig 4.0. There are several workers called

TaskTrackers which are responsible for the execution of tasks assigned to them.

Simple pipelining

Pipelining between tasks within a job

With an assumption that enough slots are available for every map and every reduce task,

we can implement pipelining as follows. Each reduce task opens a TCP socket (RFC793,

 accessed May 10, 2013) connection to every map task. As soon as a map task produces a

record, it determines the target reduce task using the partition function and sends the

record to the corresponding reduce task over the communication channel. Reduce tasks

keep receiving the records continuously and store them in an in-memory buffer

temporarily. When the buffer gets full, the reduce tasks sort the data and persist them to

the disk. When every map is finished, each reduce performs a final merge of all its spills.

http://hyperlink/#page63
http://hyperlink/#page63

Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 292

Pipelining between jobs

Reduce tasks of a job can send their output to map tasks of the next job bypassing the need

to write output to HDFS and hence avoiding the overheads.

Fig. 4.1 depicts the data flow in traditional hadoop and our proposed pipelined hadoop.

The left part shows the data flow in case of traditional hadoop. Right one shows the data

flow in case of pipelined hadoop. The difference in the architecture can be clearly

visualized. A map in traditional hadoop pushes data to map TaskTracker’s Local FS.

While in pipelined hadoop it pushes the data to map TaskTracker’s in-memory buffer as

well as its local file system in parallel. The reducer then pulls this data synchronously in

case of traditional hadoop. In case of pipelined hadoop, the reducers either asynchronously

pull the data or the data gets pushed when the destined reduce is assigned a slot.

Partial results

Partial results can be made available by applying user defined reduce function to the set of

key value pairs sent to reduce tasks at certain points of time. Each such point of time can

be called an snapshot. Estimating the accuracy of result for user defined map and reduce

function is very difficult. But, we can supply the user with execution progress reports. The

user can estimate the accuracy by interpreting the job progress values. The user can

specify the points of time for example 5%, 10%, ... 95%, 100% of the input processed. As

the execution of a map task proceeds, it is assigned a progress value by Hadoop in the

range [0,1] depending on how much input has been processed by it. We can utilize this

already existing facility in Hadoop to determine how much progress should be shown by

the reduce task. For this, we can modify the spill file sent by mappers to reducers to

include the progress score of the mapper too find the progress status, we can take an

average of individual progress scores included in every spill file that was used to produce a

particular snapshot.

Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 293

Figure 4.1: Data flow in normal Hadoop vs. pipelined Hadoop

 To when a map task didn’t send any output to reduce task because it wasn’t scheduled due

to unavailability of slots or because the reduce task was bound to fetch output from a

limited number of mappers, we can normalize our progress score by multiplying by 1=n

when the reduce task has received data from n map tasks.

Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 294

Implementing constraint based job termination

We used the modified version of Hadoop as discussed in Section 4.3, which provides us

the feature to access partial results. We provide the user a programming abstraction to

specify a constraint, as discussed below.

Programming Model

We have provided a programming model to the user for specifying constraints in the form

of a user defined function that takes two parameters - a key and a value and returns true or

false. The constraint is in form of a relation between the key and the value. The provided

interface is shown in Listing 4.1.

Listing 4.1: Termination Condition interface

*
* @param key The key Object

* @param value The value object

* @return boolean value representing the outcome of the test of relation between
key

* and value

*
/

public boolean matchConstraint(K key, V value);

}

Based on this interface user can write a Constraint class. An example is in Listing 4.2

where the user specifies a constraint that the key IITM appears more than 100 times in a

word count program. The class implements the interface TerminationCondition while

specifying the generic parameters as Text and IntWritable. In the class, matchConstraint

method has been overridden to represent the constraint.

Listing 4.2: An example termination constraint class

/
**
* A constraint terminator class */

public static class TConstraint implements

TerminationCondition<Text, IntWritable> { @Override

Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 295

public boolean matchConstraint(Text reduceKey, IntWritable reduceValue)

{

if(reduceKey.toString().equals("IITM") && reduceValue.get() > 100)

return true; return

false;

}

}

Now to add this constraint in the program so that it can be evaluated, the user needs to add

a configuration parameter named mapred.job.termination.constraint to the JobConf object.

An example is shown in Listing 4.3.

Listing 4.3: A sample JobConf

// assuming that conf is a JobConf object

conf.set("mapred.job.termination.constraint",

TConstraint.class.getName());

Then the user should provide a parameter called mapred.snapshot.freq in the JobConf

object which determines for how much percentage of input seen, the partial results should

be processed. For example a value of 0.01 will make the system process partial results for

every 1% of seen input. Full code listing with a working sample of WordCount program is

provided in Listing A.1 The user can then compile this program adding our core.jar file in

the class path and build a jar. A sample perl script in Listing B.1 performs that.

Implementation

Constraint based termination of MapReduce jobs has been implemented by using the

pipelined hadoop implementation from [2] and making some architectural changes

discussed in Section 4.3. After the user defined amount of input is seen, re-ducers are

forced to apply reduce function on the partial map output they have. At each reducer, the

Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 296

OutputCollector runs the matchConstraint function on the reduced key and value pair. If

the function returns false, the OutputCollector continues to eval-uate matchConstraint for

next key and value pair. If the function returns true for any key and value pair, the

OutputCollector issues a job termination signal to the JobTracker which terminates the job

cleanly.

Result

We conducted experiments on a sample data set of different sizes for different pro-

grams on a Hadoop cluster. The results for small dataset are in Fig. 4.2. The x-axis shows

the program name that we ran and the y-axis shows the time it took to run. We can see

from the graph, for the WordCount program the normal run took 85 seconds and upon

adding the constraint the run finished in just 28 seconds. Similar results can be seen for our

run of inverted index program and the geo code program.

The result for large dataset is in Fig. 4.3. More experiments have been run in an extension

of this work in [2] in which a user can specify multiple constraints at once.

Figure 4.2: Normal hadoop vs. Hadoop with termination constraint for dataset size 3GB

Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 297

Figure 4.3: Normal hadoop vs. Hadoop with termination constraint for dataset size 40GB

Extensions and future possibilities

A beautiful extension of this work has been done in [2]where the author has implemented

this system for multiple constraints connected with each other using a propositional

formula. Another possibility is to launch another job after terminating the current job,

hence supporting MapReduce job workflow definitions. This will require defining a

workflow in terms of jobs and constraints

Jaswender Malik et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.6, June- 2015, pg. 287-298

© 2015, IJCSMC All Rights Reserved 298

References

[1] Dean, J. and S. Ghemawat (2008). Mapreduce: simplified data processing on large

clusters. Commun. ACM, 51(1), 107–113. ISSN 0001-0782. URL http://doi.

acm.org/10.1145/1327452.1327492.

[2] Agarwal, S. (2013). Efficient Processing of industry scale data using NoSQL and

MapReduce. Master’s thesis, Indian Institute of Technology Madras, Chennai, India.

[3] Shvachko, K., H. Kuang, S. Radia, and R. Chansler, The hadoop distributed file system.

In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST), MSST ’10. IEEE Computer Society, Washington, DC, USA, 2010.

ISBN 978-1-4244-7152-2. URL http://dx.doi.org/10.1109/MSST. 2010.5496972.

[4] Ghemawat, S., H. Gobioff, and S.-T. Leung (2003). The google file system. SIGOPS

Oper. Syst. Rev., 37(5), 29–43. ISSN 0163-5980. URL http://doi.acm.org/

10.1145/1165389.945450.

